Jump to content

Historic Delft Experiments tests Einstein's 'God does not play dice' using quantum 'dice'


Recommended Posts

  • Location: Camborne
  • Location: Camborne

    Having just read some of the posts in God thread.



    Random number generators developed at ICFO - The Institute of Photonic Sciences, by the groups of ICREA Professors Morgan W. Mitchell and Valerio Pruneri, played a critical role in the historic experiment was published online today in Nature by the group of Ronald Hanson at TU Delft. The experiment gives the strongest refutation to date of Albert Einstein's principle of "local realism," which says that the universe obeys laws, not chance, and that there is no communication faster than light.

    Read more at: http://phys.org/news/2015-10-historic-delft-einstein-god-dice.html#jCp




    Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres



    More than 50 years ago1, John Bell proved that no theory of nature that obeys locality and realism2 can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in ‘loopholes’13, 14, 15, 16. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell’s inequality. We use an event-ready scheme17, 18, 19 that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 ± 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole14, 15), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions13. We performed 245 trials that tested the CHSH–Bell inequality20S ≤ 2 and found S = 2.42 ± 0.20 (where S quantifies the correlation between measurement outcomes). A null-hypothesis test yields a probability of at most P = 0.039 that a local-realist model for space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for memory16, 21 in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication22 and randomness certification23, 24.



    Link to comment
    Share on other sites

    • Replies 0
    • Created
    • Last Reply


    This topic is now archived and is closed to further replies.

    • Create New...